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What are Random Numbers?
• A sequence of numbers is random if there is no short pattern

that can describe it.

• Given a sequence of numbers, can we tell if it is random?

• Maybe we just cannot see the pattern.

• Random numbers in nature (as far as we can tell).
– Flipping coins

– Time of quantum events

• Are these random?

– 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

– H T H H T H H H T H H H H T H H H H H T ...

– 50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 



Using Random Numbers

• Random numbers are useful for:
– Simulating processes

– Computer games

– Computer graphics

– Testing software

– Gambling

– Cryptography

• Simulations:
– If a model is too complex to model exactly.

– To observe a system’s evolution.

– For fun.

– Aquarium screen savers and QCD Monte Carlo methods.



Can We Generate Random Numbers?

• We cannot provide an arithmetic algorithm to produce
sequences of truly random numbers.

• We can provide an algorithm to produce numbers having
certain statistical properties.
– Frequency of individual numbers

– Frequency of pairs

– Average distance between recurring numbers

– Bit transition tests

– Autocorrelation tests



True Random Numbers

• Physically generated.   Quantum events or chaotic systems.

• Hotbits: http://www.fourmilab.ch/hotbits/
– Radioactive decay

• Random.org:  http://www.random.org/
– Atmospheric noise

• Lavarand:  US Patent 5,732,138
– "Method for seeding a pseudo-random number generator with a 

cryptographic hash of a digitization of a chaotic system.“

• Quantum Random Number Generator: http://qrbg.irb.hr/
– USB2  12Mb/s



Pseudorandom Numbers

• Fast vs Good

• A “complicated” mathematical function often fails
the statistical tests.

• Early random number generators were bad and 
led to flawed simulations.

• A reasonably fast and good method is the
“linear congruential method”

X[n+1] = (a X[n] + b )  mod m

for certain choices of a, b, m, X [0].



(Pseudo) Random Numbers in Java
• Random()   // Creates a new random number generator

• Random(long seed)  // Creates a random no generator with a seed.

• Protected int next(int nbits) 
– Linear congruential method

– The low order 1 <= nbits <= 32 of the result are pseudorandom bits

– Can over-ride this in subclasses

• boolean nextBoolean()
double   nextDouble()        // Uniform over [0, 1]
double   nextGaussian() // Normal with mean 0, std-dev 1
int          nextInt()             // Uniform over all possible values
long       nextLong() // Uniform over all possible values



A Coin Flipper

class CoinFlipper {
private Random rn = new Random();

public boolean flip() { return rn.nextBoolean(); }

}



A Dice Roller

• Be careful to avoid bias   (maxint mod 6 != 0)

class DiceRoller {

private Random rn = new Random();

// Return a number in 1..6

public int roll() {

int n;

do {

n = rn.next(3) & 0x7;   // n in 0..7

} while (n == 0 || n == 7);

return n;

}

}



Stock Option Pricing
• You should know about stock options if you are going to

be offered some as part of your compensation.

• A stock option is a contract that allows you to buy (or sell)
a share of a particular stock in a particular time window
for a particular price.

E.g.  An option to buy IBM stock at $120 on November 1, 2010.

• What are options worth?   We can use Monte Carlo simulation to find out.



Terminology

• Using the option to buy (or sell) the share is called “exercising”
the option.  

• The price at which you can buy (or sell) the share is called the “strike price.”

• The last day they can be exercised is the “expiry date”.

• If the exercise is to buy, it is called a “call”.  If it is to sell then it is a “put”.

• Options that may be exercised at any time up to the expiry date are
called “American” options.
Options that may be exercised only on the expiry date are called
“European” options.

• Some options, notably employee stock options, are “granted” on one
date (when the parameters are fixed) and “vest” according to a schedule.
Once they vest, they are locked in.



Some Notation

• The price of the stock at a point in time “S(t)”

• The strike price “K”

• The expiry date “T”

• The grant date “T0”

• The “risk-free” rate  “r” (e.g. bond yields for same period)

• The “drift” rate “μ” (= r, because you are hedging)

• The “volatility” “σ”
All of r, μ, σ are usually given as “annualized” rates.



Simulating One Time Step

• Si+1= Si × exp (μeff + σeff × normal(0,1))

Si = S(ti )

μeff = (μ – ½ σ × σ)/ ΔT

σeff = σ /sqrt(ΔT)

normal(0,1) = a normally distributed random variable
with mean 0 and standard deviation 1.

ΔT =  the unit of time corresponding to the rates r, μ and σ,
typically 252 (trading days per year).



Continuously Compounded Interest

• Outside the world of financial analysis, people think
about annual percentage rates.   E.g.  6% APR.

• If compounded monthly we have a 
monthly interest rate rmo,      given by     1 + ryr  = (1 + rmo)^12
or a daily interest rate rdy, given by     1 + ryr  = (1 + rdy)^365.

• After t days, a value will have grown by   (1 + rdy)^t.

• Financial mathematicians use a “continuously compounded”
interest rate rcc such that   exp(rcc t) = (1+ ryr)^t  e.g. for t in years.

So exp(rcc) = 1+ ryr.   6% APR => rcc = ln(1.06) = 5.8268 % CC



Volatility

• Based on a series of price observations over a 
past window.

• Compute std deviation of  ln((Si +Di+1 )/Si-1)
divided by the sqrt of the # of observations per year.

That is, the annualized std dev of the continuously
compounded growth.



Computing Volatility – Getting Data



Computing Volatility – Getting Data



Computing Volatility – The Main Event



Monte Carlo Simulator



Main Program – Test with IBM Stock

In-the-money
by $6.34



Compare to Current Options Market

The market has 
these options
trading at $9.10,
which is 
overvalued
according to 
our simulation.



Modelling More Complex Situations
• It turns out that the simulations we have just done can be calculated

analytically using the Black-Scholes model.

• More complex situations cannot be modelled exactly so easily,
which is the real reason to use Monte Carlo methods.

• E.g.  Suppose an investor is nervous and will cash out the moment
the investment reaches 125% of the strike price.

Then we would modify the method   inTheMoneyFinalValSample to
compute the final value from the array for each run differently.



Modelling More Complex Situations
• For our nervous investor with the 125% threshhold, we would replace

finalVals[i] = Math.max(Svals[ndays-1]-K, 0);

with something like:

double thisFinalVal = 0; 
for (int j = 0; j < ndays; j++)

if (Svals[j] > 1.25 * K) {

// Threshhold met.  Exercise now.

thisFinalVal = Svals[j] – K;
break;

}

if (thisfinalVal == 0) {

// Reached end with no early exercise.  Exercise at expiry.
thisFinalVal = Math.max(Svals[ndays-1]-K, 0);

}

finalVals[i] = thisFinalVal;


